Digital Terrestrial Television

ISDB-T advantage for the Philippines

(Integrated Services Digital Broadcast – Terrestrial)
October 9, 2008

James Rodney P. Santiago

Consultant-ARIB/Digital Broadcast Experts Group

http://www.arib.co.jp http://www.dibeg.org

General Considerations for the selection of a DTV Standard

- •The Philippines will be undergoing a "Transition" process until such time that the full "Migration" date has been determined by the Regulator.
- The Chosen DTV standard must not affect or upset the current status quo.
- •The DTV standard must provide superior TV signal compared with analog NTSC.
- •DTV is not a new application rather an improvement of analog broadcast technologies that should provide a better viewing experience for the people.
- •DTV is a technology that should serve the interest of the people.

Analog TV Frequency allocation

VHF BAND

Ch2 Ch3 Ch4	Ch5 Ch6 Ch7	Ch8 Ch9 Ch10	Ch11 Ch12 Ch13
-------------	-------------	--------------	----------------

UHF BAND

Ch14	Ch15	Ch16	Ch17	Ch18	Ch19	Ch20	Ch21	Ch22	Ch23	Ch24	Ch25	Ch26
Ch27	Ch28	Ch29	Ch30	Ch31	Ch32	Ch33	Ch34	Ch35	Ch36	Ch37	Ch38	Ch39
Ch40	Ch41	Ch42	Ch43	Ch44	Ch45	Ch46	Ch47				Ch51 / P. Sar	

DTV Channel Allocation

VHF

|--|

UHF

Ch14	Ch15	Ch16	Ch17	Ch18	Ch19	Ch20	Ch21	Ch22	Ch23	Ch24	Ch25
Ch26	Ch27	Ch28	Ch29	Ch30	Ch31	Ch32	Ch33	Ch34	Ch35	Ch36	Ch37
Ch40	Ch41	Ch42	Ch43	Ch44	Ch45	Ch46	Ch47	Ch48	Ch49	Ch50	Ch51

Proposed Transition Band - Ch.14-19 for National Broadcaster

Proposed Transition Band - Adjacent channel UHF for Regional Broadcaster

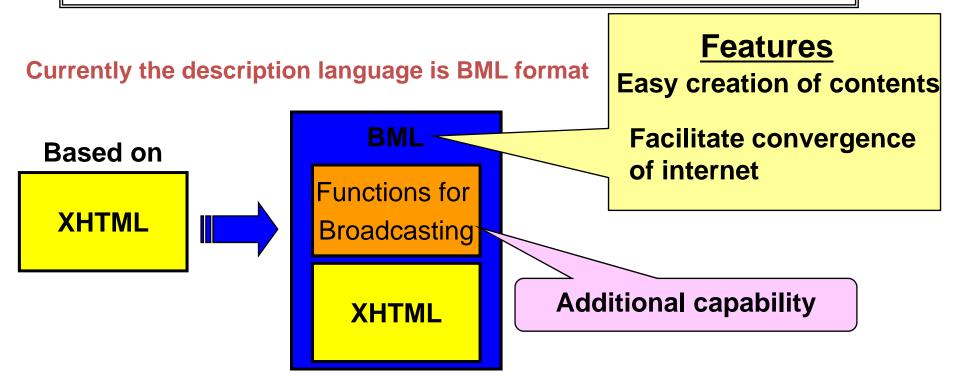
Background of Digital Television in the Philippines

- Transition to Digital TV broadcast should provide a superior service to the people.
- It should provide a better viewing experience whenever and wherever so desired.
- It must pave the way for a more efficient utilization of spectrum.
- It should preserve the current broadcast "Status Quo"
- It should continue to provide fast, accurate, reliable and free information to the Public as it has been in the analog TV broadcast.

DTV service in the Philippines is envisioned to undergo a two stage process,

- 1. Transition
 - Parallel broadcast of Analog TV broadcast with Digital TV broadcast.
- 2. Migration
 - Analog broadcast shut-off and full Digital TV broadcast.

ISDB-T SERVICE BOQUET


ISDB-T has all of this feature incorporated in the standard.

Data Broadcasting

All DTTB Broadcasters and BS Broadcasters providing Data broadcasting (datacast) now

Program related information Weather information

Anytime news
Report of sports game etc,

Example for Datacasting(1)

Top menu

Example for Datacasting(2)

Weather news

Example for Datacasting(3)

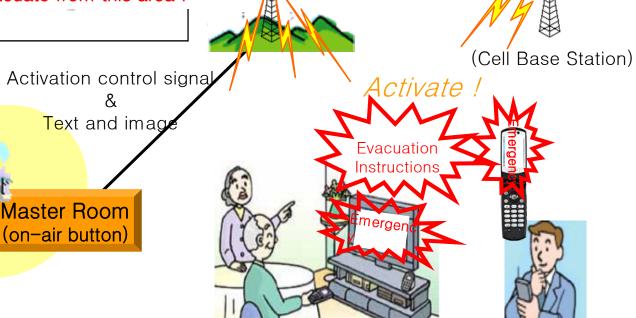
Program related data

Disaster Warning System

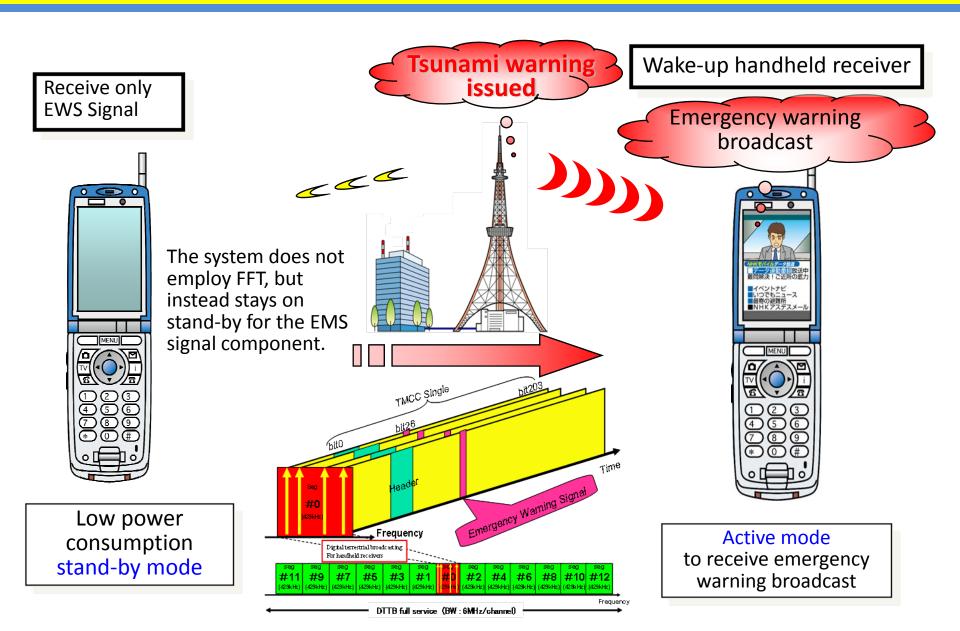
Text Message

Possibility of river flooding has increased. Residents near the river should evacuate. Areas affected are as follows.

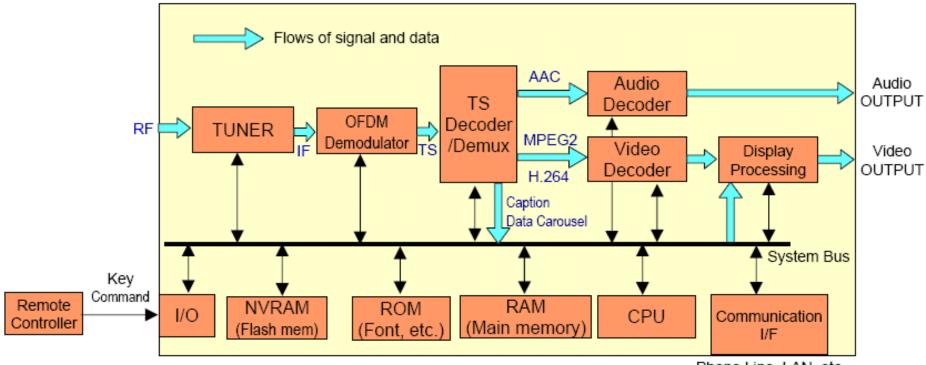
TV Station


Meteorological Agency

Picture Message


Evacuate from this area!

Activation Control by Broadcasting
Non-congested communication
Power-saving feature is necessary



Both in and outside the home.

Emergency Warning Broadcast System

Basic ISDB-T Set Top Box

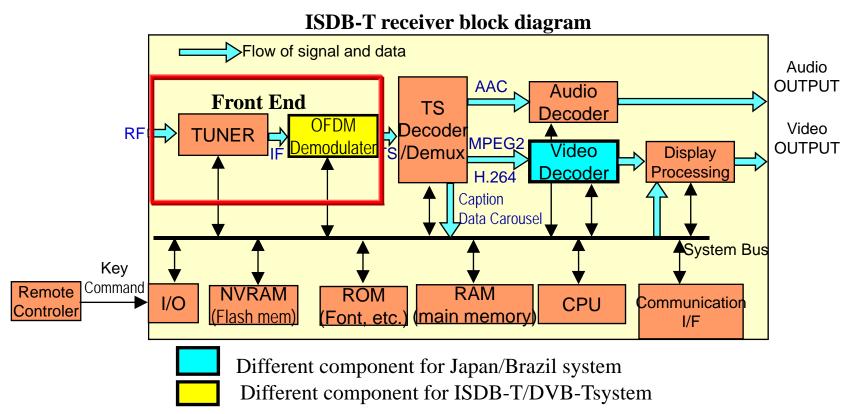
Phone Line, LAN, etc.

Between a Full-Seg receiver and a One-Seg receiver, the basic configurations are about the same, though there are some differences such as a tuner, video decoder, resolution of display and so on.

RF • Radio Frequency IF : Intermediate Frequency

TS : Transport Stream

Demux : Demultiplexer NVRAM : Non-volatile RAM


Structure of Digital Receiver

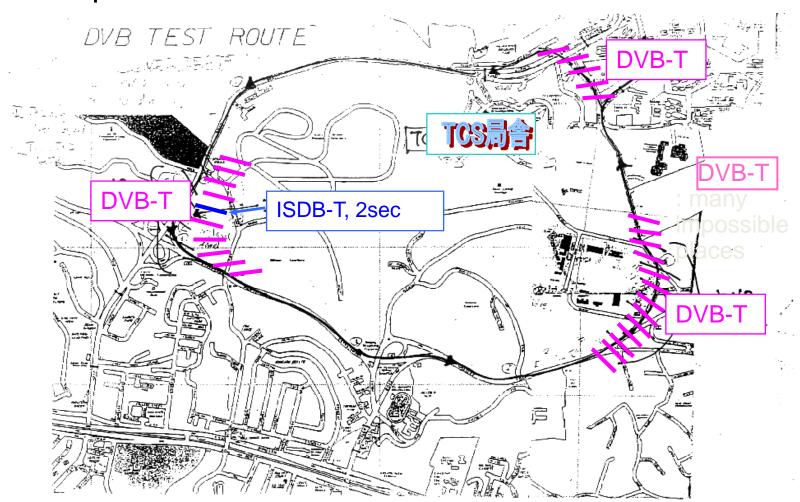
1. Relationship between Japan/Brazil ISDB-T system

- (1)As shown in receiver composition, hardware difference is only "Video Decoder" portion. Datacasting is based on software.
- (2) Common hardware can be used for "Front End" (6MHz BST-OFDM)
- (3)Japan/Brazil ISDB-T is family, so many component can be used for both systems

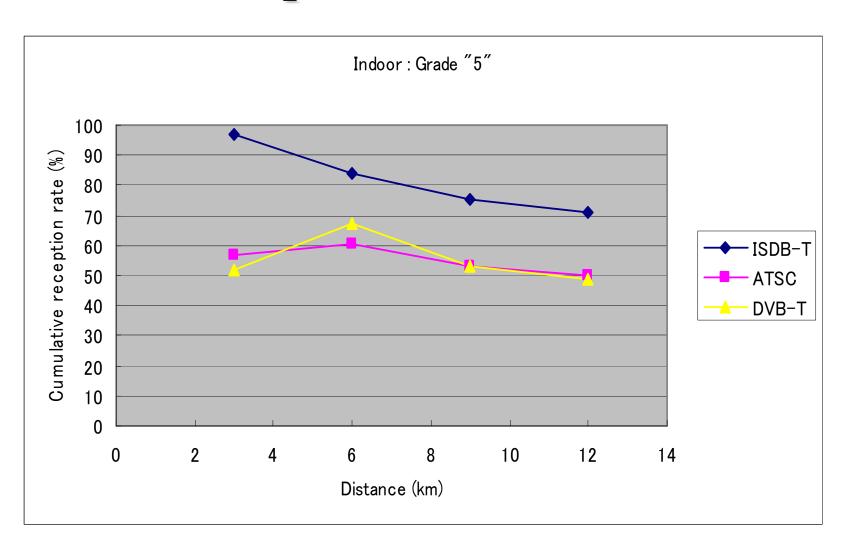
2. Relationship between ISDB-T/DVB-T system

(1)As shown in receiver composition, hardware difference is only "OFDM demodulator" portion. The composition of Backend basically depends on the service quality/performance.

Contents


- * Background
- * Technical Parameters
- * Technical Features
- * Receivers
- * Studies elsewhere
- * Market Projections
- * Strength of ISDB-T

Comparison between Three Systems


Item	ATSC	DVB-T	ISDB-T
Modulation	8VSB-AM	OFDM	BST-OFDM
Hierarchical transmission	Non	Non	Yes
Time interleave	Non	Non	Yes
Mobile & portable	Non	DVB-H, Separate Std. (Needs other trequencies)	One-seg(more than 20,000,000 was sold)
Artificial noise	Poor	Poor	Excellent
HDTV	Yes	Non	Yes
Data Broadcasting	Non	(MHP),MHEG5	BML(more than 30,000,000 receivers)

Results of Mobile Reception In Singapore

Comparison tests between DVB-T and ISDB-T

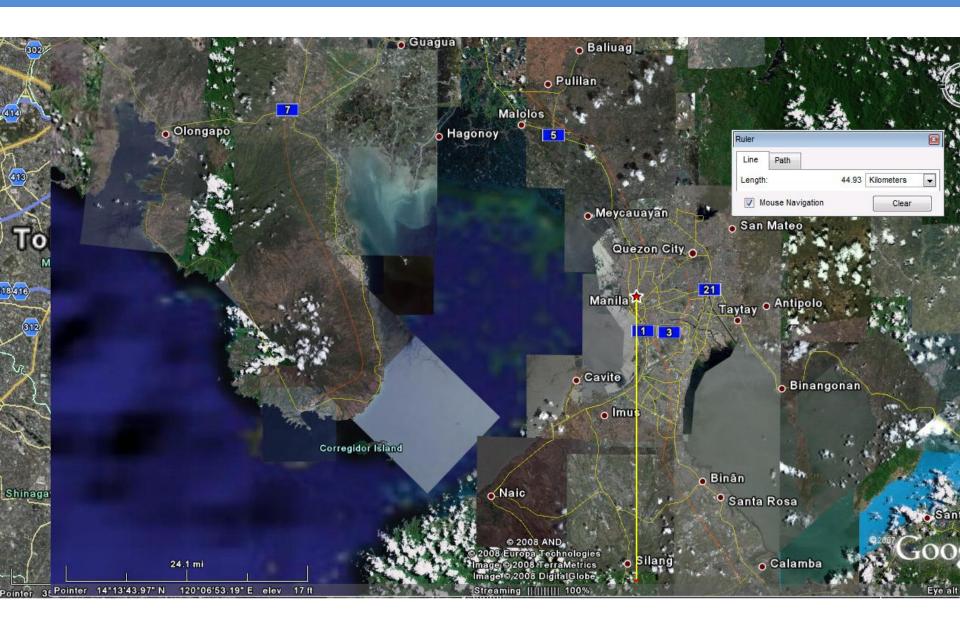
The Comparison Test in Chile

Contents

- * Background
- * Technical Parameters
- * Technical Features
- * Receivers

- * Figurative illustration of DTV Coverage
- * Market Projections
- * Strength of ISDB-T

ISDB-T transmission in Tokyo


Transmitter Power = 10 KW
Antenna Configuration = 8 Level, 24 phases

DVB-T in Singapore

Mega-Manila

Scenario

- Broadcast SDTV now broadcast HDTV later:
 - Broadcaster
 - Invest in SD infrastructure and later invest again in HD infrastructure.
 - People
 - Buy SD STB and then replace again with new HD STB.

No Compelling reason for the people to migrate to Digital!

- Broadcast HDTV Now
 - Broadcaster
 - Invest in HD infrastructure one time.
 - People
 - Buy HD STB is compatible with SD STB

People will be interested to buy DTV receiving equipment.

SUMMARY

DIGITAL TELEVISION STANDARD ATSC ISDB-T RECEPTION TYPE DVB FIXED ROOFTOP PORTABLE/ Impulse Noise A-VSB/ MPH **Problem MOBILE** (Under development) DVB-H A-VSB/ MPH **HANDHELD** Infrastructure (Under development)

VIDEO DEMONSTRATION OF ISDB-T RECEPTION

Inside the Van and Car mobile HDTV reception

Inside the Car mobile HDTV reception in an underpass

Handheld reception inside a train running at 80kph

Handheld reception in basement 2

Field experiment in Mito, Hitachi, Yamagata Prefecture

For additional information and download of presentation slides around the world please go to:

www.dibeg.org

Thank you for your attention