ISDB-T technical seminar(2008) in Philippines

# **Presentation 5**

# Features/Standard Structure of ISDB-T

February, 2008 Digital Broadcasting Expert Group (DiBEG)

Japan

Yasuo TAKAHASHI

(Toshiba)



## A. Features of ISDB-T



#### **Requirement for ISDB-T in Japan**

| No.  | Item                     | Requirement                                         | Note     |
|------|--------------------------|-----------------------------------------------------|----------|
| 1    | High quality             | HDTV should be possible in 6MHz bandwidth           |          |
| 2.   | Robustness               | Robustness against multi-path, urban noise, fading  |          |
|      |                          | and any other interference                          |          |
| 3.   | Flexibility              |                                                     |          |
| 3(1) | Service Flexibility      | Any kinds of service are possible in 6MHz           | HD/SD    |
|      |                          | bandwidth                                           | possible |
| 3(2) | Reception flexibility    | Any kinds of reception system are possible,         |          |
|      |                          | fixed/mobile/portable in same bandwidth             |          |
| 4    | Effective utilization of | SFN(Single Frequency Network) is possible to        |          |
|      | frequency resource       | reduce frequency.                                   |          |
| 5.   | Interactivity            | Harmonization with network                          |          |
| 6    | Data casting             |                                                     |          |
| 7.   | Commonality              | Maximum commonality is need to reduce receiver      |          |
|      |                          | cost. Especially, to digital radio, common standard |          |
|      |                          | is desirable.                                       |          |



#### High quality/ service flexibility

Following technologies are adopted in ISDB-T; (a)Flexible multiplex technology (MPEG-2 systems), (b)Flexible and high efficiency video/ audio coding system (MPEG-2 and MPEG AAC).
As a result, many kinds of broadcasting service, such as (a)HDTV, (b)HDTV+SDTV, (c)Multi-channel SDTV, are possible in one standard. ISDB-T receiver receives any type of service described above.

For Coding/Multiplexing system, Outlines are explained in presentation 9

#### **ISDB-T** transmission system

ISDB-T adopts very unique and high performance transmission technology, named "OFDM Segmented Transmission with Time Interleave". This transmission technology enables many advantages shown below compared to other DTTB system



Details of transmission system will be explained in presentation 7



#### **Robustness/ reception flexibility**

To give the robustness against such degradation factor, ISDB-T adopts OFDM transmission system with "Time Interleave" technology. As a result, ISDB-T gives following features compare to other DTTB systems; (a) lower transmitter power, (b) possibility of indoor antenna reception, (c )mobile/portable reception service, etc.

#### **Effective utilization of frequency resource**

By adopting OFDM transmission system, it is possible to construct Single Frequency Network(SFN). As a result, possible to reduce frequency resource for relay transmitter(repeater). Further more, using same frequency for plural transmitters of same network, mobile/ portable receiver is not required to change receiving channel.



#### **Mobility/ Portability**

To enable fixed/ mobile/portable reception service in same channel, ISDB-T developed new transmission technology, named "Segmented OFDM transmission system".

- As a result, fixed/mobile & portable service in same channel is possible.
- "One-seg" service, its unique portable service of ISDB-T, uses 1 segment of 6MHz.
- One seg receiver is easily mounted into mobile-phone, portable PDA, USB tuner ,etc, so it enable the broadcast service of "Any time, Any place"

#### **One-seg service**

One-seg service, uses 1 segment of 6MHz, dose not need another channel, so not need more transmitter.. it leads save of frequency resource and broadcaster's infrastructure cost. And more, One-seg receiver operates as narrow band reception, this operation saves consumption power. As a result, long time reception is possible by battery.





Image of "One-seg " service in same channel



#### Commonality

Japanese digital audio broadcasting, named ISDB-Tsb just now trial service stage, adopts common standard of ISDB-T for coding/transmission system. As a result, common receiver for One-segment audio service and One-seg TV service has been on market.



**Relation between digital TV and Digital Audio** 



# **B. Structure of ISDB-T Standard in Japan**



#### **1. Structure of Digital Broadcasting**



(note) both BML and MHP are available, But in Japan now BML is only service in.



#### 2. Digital Broadcasting Standard in Japan



Note: Cable transmission system standards are defined at another consortium



### 2. Digital Broadcasting Standard in Japan( continued)

|                           | <b>Digital Television</b>            |             | Digital Sound |           |  |
|---------------------------|--------------------------------------|-------------|---------------|-----------|--|
|                           | BS / wCS                             | Terrestrial | Terrestrial   | Satellite |  |
| System                    | STD-B20                              | STD-B31     | STD-B29       | STD-B41   |  |
| Multiplex                 | Coding & Multiplexing                |             | STD-B32       |           |  |
|                           | Service Information                  |             | STD-B10       |           |  |
| Source coding             | Coding & Multiplexing                |             | STD-B32       |           |  |
| Data                      | Presentation Engine (BML) STD-B24    |             | D-B24         |           |  |
| Broadcasting              | Execution Engine (GEM-based) STD-B23 |             |               |           |  |
| CAS                       | Conditional Access                   |             | STD-B25       |           |  |
| Home servers              | System based on Home Servers STD-B38 |             |               |           |  |
| Receivers                 | STD-B21                              |             | STD-B30       | STD-B42   |  |
| Operational<br>Guidelines | TR-B15                               | TR-B14      | TR-B13        | TR-B26    |  |

(note) Documents marked by red color can be downloaded from DiBEG HP http://www.dibeg.org/aribstd/ARIBSTD.htm 12

#### 2. Digital Broadcasting Standard in Japan( continued)





#### 3. Outline of ARIB Standards

#### Source coding & Multiplexing

| Name                                           | Outline                                                                                                                                                         | note |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Video/Audio<br>coding<br>(STD-B32)             | -Based on MPEG-2 video coding<br>-Cover 1080i,720p,480p,480i<br>-Based on MPEG AAC audio coding<br>-Up to 5.1 Stereo audio<br>-Based on MPEG systems multi-plex |      |
| Data Broad-<br>casting<br>(STD-B24)            | -Data broadcasting description<br>-Data transmission format<br>-Small size Video coding(MPEG-<br>4,H.264)                                                       |      |
| Program<br>line-up<br>information<br>(STD-B10) | -PSI/SI description<br>-EPG description<br>-Necessary for program selection                                                                                     |      |

#### 3. Outlines of Standards (continued)

Transmission coding

| Name                              | Outline                                                                                       | note                                                          |
|-----------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Satellite TV<br>(STD-B20)         | -Slot structure<br>-Trellis+RS(Concatenated coding)<br>-Single carrier 8 PSK modulation       | 2 HDTV programs<br>are muliti-plexed<br>into 1<br>transponder |
| Terrestrial TV<br>(STD-B31)       | -Segment structure<br>-Viterbi+RS (Concatenated coding)<br>-Multi-carrier(OFDM) transmission  | 1 segment<br>transmission is<br>available                     |
| Terrestrial<br>Audio<br>(STD-B29) | -1 and 3 segment transmission<br>-Others are almost same as STD-B31                           | 1 segment system<br>is compatible to 1<br>segment of TV       |
| Satellite<br>Audio<br>(STD-B42)   | -Multiplex 64 CDM channel<br>-Viterbi+RS (Concatenated coding)<br>-CDM-BPSK/QPSK transmission | Adopt<br>"AAC+SBR"<br>2.6GHz Band                             |

What is the operational guideline?

All the technical elements required are written in ARIB STD. But, the details for operation of broadcasting are defined separately, even though based on ARIB STD. These documents are called "Operational Guideline"

**Examples** 

ARIB TR-B13; Terrestrial Audio broadcasting operational guideline

ARIB TR-B14; Terrestrial TV broadcasting operational guideline

ARIB TR-B15; BS/wideband CS broadcasting operational guideline

ARIB TR-B26; Satellite Audio broadcasting operational guideline



#### Reference: Relation between Government Regulations and ARIB Standards

# **Standardization Flow in Japan**





#### **Reference: Continued**

# Government Regulations and ARIB Standards for radio systems

| /                  | Government Regulations                                                                                                               | ARIB Standards                                                                                                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nature             | Mandatory                                                                                                                            | Voluntary                                                                                                                                                                |
| Purpose            | <ul> <li>To promote efficient<br/>use of frequency</li> <li>To prevent<br/>interference</li> <li>etc.</li> </ul>                     | <ul> <li>To ensure common air<br/>interface</li> <li>To ensure suitable quality</li> <li>For greater convenience<br/>to manufacturers and users</li> <li>etc.</li> </ul> |
| Technical<br>items | <ul> <li>Frequency band</li> <li>Spurious emission</li> <li>Frequency tolerance</li> <li>Occupied bandwidth</li> <li>etc.</li> </ul> | <ul> <li>Communication protocol</li> <li>Sencitivity</li> <li>Carrier to Noise ratio</li> <li>Bit error rate</li> <li>Measurement method</li> <li>etc.</li> </ul>        |

# **END of Presentation 5**

Thank you for your attention

