History and Technology of ISDB-T ~ aiming at mobile and portable reception ~

17, September, 2007 Argentina DiBEG, JAPAN Osamu Yamada Pioneer

Biography

1

2

1944 Born in Tokyo

1967 Graduated from Waseda University and joined NHK

1971 Started research of new broadcasting systems

1975-1985 Engaged in the development of Teletext

1985-1992 Engaged in the development of FM multiplex broadcasting

1986-2002 Engaged in the development of terrestrial digital

broadcasting

1991-2000 Engaged in the development of satellite digital broadcasting

1999-2002 Director General of NHK Science and Technical Research Laboratories

2002 left NHK and Joined Pioneer

2005 Senior Managing Director of Pioneer

2007 Executive Corporate Adviser, R&D

Contents

1. History

2. TELETEXT

3. FM Multiplex Broadcasting

4. ISDB-T

4.1 OFDM

4.2 Frequency Assignment

4.3 Mobile Reception

4.4 Effective Usage of Frequency

4.5 System Parameter and BST-OFDM

4.6 Receivers

4.7 New Technologies for Receivers

4.8 New Technologies for SFN

4.9 International Activities

5. Conclusion

1. Broadcasting History in Japan

TELETEXT

- (1) TELETEX is the first service with digital technology in analog broadcasting age.
- (2) Characters and graphics are coded and multiplexed with the vertical blanking period of analog TV signals.
- (3) In 1970s, three systems, System A (France), System B (UK), System C (North America), and System D (Japan) had been developed.
- (4) At present, System B, and System D are available.
- (5) Japanese each character has a different meaning. Bit errors give erroneous information, therefore bit error can't be permitted.
- (6) Only Japanese TELETEXT system had been making much of the development of error correcting codes.
- (7) Japanese TELETEXT never shows incorrect characters, because of the new error correcting method we developed.

Field Trials of TELETEXT

Field Trial in Wakayama

Error Pattern Analizer

Research Result

- (1) The simulation results using error patterns collected in the actual field trials showed that the (272,190) code was the best.
- (2) The (272,190) code is one of the majority logic decodable codes, and it is called a difference Set Cyclic Code.
- (3) The (272,190) code is one of LDPCs (Low Density Parity Check), which are hot topics in an error correcting code field.

Packet Signals of TELETEXT

Effect of the (272,190) Code

Random noise (Input level:31dB μ V, Bit-error-rate:2.4x10⁻²)

Ghost interference (Delay time:2.5 μ s,D/U=7dB, Bit-error-rate:4.03x10⁻³)

Applications of the (272,190) Code

 (1) TELETEXT : (272,190)
 (2) FM multiplex Broadcasting : Product Code-(272,190)X(272,190)
 (3) Optical Card System for immigration card in U.S.A : Product Code-(272,190)X(272,190)
 (4) Protection for key of BS Pay TV : (272,190)
 (5) ISDB-T : Shortened (184,102) for TMCC signals

What we were taught

- (1) Digital signals are robust against random noise, but very weak against wave distortion.
- (2) Error correction is one of the key technologies in digital broadcasting, and indispensable technology for digital transmission.
- (3) Thanks to the progress of LSI, theoretically difficult themes can be realized.
- (4) Though analog TV can be received in running cars to some extent, TELETXE signals(5.27Mbps) can't be received.
- (5) At that time, I believed that digital terrestrial TV broadcasting would be impossible, because of high bit rate of video signals and difficulty of mobile reception.

3. FM Multiplex Broadcasting —DARC(Data Radio Channel)— (1986~1995)

Frequency Spectrum of FM Stereo Broadcasting Signals

Baseband spectrum of FM stereo broadcasting under multipath interference

Frequency Spectrum of DARC

Error Correction of DARC

Powerful error correction by (272,190) product code

Product code

Car Navigation System with VICS (Vehicle Information Communication System)

Penetration in March, 2006 1.5 Million

Example of VICS

Performance of the (272,190) product code

Comparison of DARC and RDS

System	DARC	RDS
Subcarrier	76 kHz	57 kHz
Multiplex level	4~10%	2~3%
Modulation	LMSK	BPSK
Bitrate	16 kbit/s	1.2 kbit/s
Error correction	(272,190)	(26.16) code
	product code	(20,10) 0000

What we were taught

- (1) Many kind of digital modulation methods
- (2) Difficulty of mobile reception : poor antenna gain, fading interference, ghost interference
- (3) For example, the difference of antenna gain between fixed reception and mobile reception is more than 15 dB.
- (4) Existence of potential need, so called traffic information service

Merits of Digital Broadcasting

- (1) Robustness against noise
- (2) Easy channel assignment
- (3) Effective use of bandwidth
- (4) Mobil and portable reception
- (5) High video quality
- (6) Affinity to computer and Internet
- (7) Easy to add new services
- (8) Fit for LSI technology

Introduction of Digital Broadcasting

Year	94 96 98 2000 02 04 06 08
Japan Satellite	ISDB-S BS ∇ CS ∇ ∇
Terrestrial	110 degree CS Analog Broadcasting will be closed in 2011
TV Audio	ISDB-T Start broadcasting in 3 metropolitan areas ISDB-Tsb Test broadcasting in Tokyo, Osaka
Cable	ISDB-C
US Satellite	✓ DirecTV, USSB etc.
Terrestrial	DTV V End of Analog Broadcasting
Europe	
Satellite	Canal Sat. etc.(France, Italy, Germany, Spain etc.)
Terrestrial	UK (BBC) etc. 🔽

Implementation Schedule of ISDB-T in Japan

System Requirements and Principal Technologies

(1) Excellent transmission characteristics **OFDM**

(2) HDTV, mobile and portable services OFDM, time interleave, hierarchical transmission and one seg

(3) System flexibility Segment structure

(4) Effective use of frequency **SFN**

Why Mobile and Portable Reception

- (1) All kind of TV programs including data services can be received at home in the future, via satellite, cable, internet, etc..
- (2) People's outside life times are increasing in the present-day life.
- (3) Broadcasters have to anytime serve information including video, audio, and data.
- (4) Especially, the emergency information service is related to a matter of life and death, therefore it is a very important role for broadcasters to provide people with emergency information anytime and anywhere.
- (5) Above media in (1), can't provide people such services, and VHF and UHF band frequency used by broadcasters, are the best for mobile and portable reception.
- (6) In the age of the convergence of broadcasting and communication, Broadcasters can't survive without mobile and portable services.

4.1 OFDM

(Orthogonal Frequency Division Multiplex)

DAB (Digital Audio Broadcasting)

- (1) In 1980's, EBU developed Digital Audio Broadcasting (DAB).
- (2) DAB adopted two new digital technologies, OFDM (Orthogonal Frequency Division Multiplex, CCETT in France) and digital audio compression technology (IRT in Germany).
- (3) We started the research of OFDM as a digital modulation technology for mobile TV.
- (4) We knew that Dr. Hirosaki (NEC) had already presented the OFDM technology for the first time in the world.

OFDM Signals

Modulated OFDM signals (Time and Frequency domains)

FPU(Field Pick Up) Transmitter and Receiver

Comparison of FPU between OFDM and FM

Original of BST-OFDM (Band Segmented Transmission-OFDM)

[Old name was BST(Band-Split-Transmission)-OFDM]

Comparison between Digital(OFDM) and Analog Broadcasting

OFDM

47

Information Bit-rate v.s. C/N

Effect of Time Interleaving (1)

Effect of Time Interleaving (2)

Result of field trials

4.4 Effective Usage of Frequency (SFN : Single Frequency Network)

Routes of Mobile Reception Measurements

Transmitter A : ON, B : OFF

Transmitter A : OFF, B : ON

Transmitter A : ON, B : ON

SFN field trials in Hong Kong

12/13/98 Prepared by TVB Transmission Network, Peter Chu, Ref.ISDB-TTESTV1.1

57

4.5 System Parameter and BST-OFDM

Segmentation

Audio Broadcast

Transmission Parameters

Mode		Mode 1 (Mobile)	Mode 3 (Fixed)			
Number of carrier		1405 2809		4992		
Carrier distance		3.968kHz 1.984kHz		0.992kHz		
Valid symbol length		0.252ms 0.504ms		1.008ms		
Guard interval length		1/4, 1/8, 1/16, 1/32 of valid symbol length				
Error	inner coding	Convolution coding (1/2, 2/3, 3/4, 5/6, 7/8)				
correction	outer coding	Reed-Solomon (208, 188)				
Time domain interleave		Convolution 0, 0.1, 0.2, 0.4 second				
OFDM segment		13				
Bit rate		3.65 – 23.23 Mbps				

ARIB Standards and ITU-R Recommendations for ISDB-T

Items	Contents		ITU-R Recomme ndations
Video coding	MPEG-2 Video (ISO/IEC 13818-2)	STD-B32	BT.1208
Audio coding	MPEG-2 AAC (ISO/IEC 13818-7)	STD-B32	BS.1115
Data broadcasting	BML (XHTML), ECMA Script	STD-B24	BT.1699
Multiplex MPEG-2 Systems (ISO/IEC 13		STD-B10, STD-B32	BT.1300, BT.1209
Conditional access	Multi 2	STD-B25	_
Transmission ISDB-T transmission		STD-B31	BT.1306 System C
Receiver	Receiver ISDB-T receiver		—
Operational guideline ISDB-T broadcasting operation		TR-B14	_

63

TMCC(Transmission and Multiplexing Configuration Control)

TMCC signals are transmitted on specified carriers every segment to show the transmission parameters, modulation, error correction, partial reception, etc.. TMCC signals are modulated with BPSK, and error protected by the (184,102) code.

Contents of TMCC Information

Number of bit	Content		
2	System ID(TV/Audio)		
4	Count down counter		
1	Emergency		
1		Flag of partial reception(one seg)	
13	Current	Transmission parameter of layer A	
13	information	Transmission parameter of layer B	
13		Transmission parameter of layer C	
40	Next information		
15	Reserve		

65

Video Format

Vertical	Horizontal	Aspect ratio	Frame frequency
1080(1125)	1440, 1920	16:9	29.97(i)
480(525)	720	16:9	59.94(p)
480(525)	720, 480	16:9, 4:3	29.97(i)
720(750)	1280	16:9	59.94(p)
1080(1125) *	1440, 1920	16:9	59.94(p)
			·

(i) : interlace

(p) : progresive

* : Future system

Pilot Broadcasting in Japan

(1) Syst	em flexibility :
Seg	mentation, Hierarchical transmission
(2) Rob	oustness against impulse noise and multi-path
inte	rference :
OFI	DM, Time interleaving
(3) Mol	oile reception :
OFI	DM, Time interleaving,
(4) Port	table reception :
OF	DM, Time interleaving, One seg(partial reception)
(5) Effe SFN	ective frequency usage :
(6) Con	npatibility with radio services :
Seg	mentation

Comparison of Three DTTBs

Item	Japan (ISDB-T)	Europe (DVB-T)	US (DTV)	Note
Format	BST-OFDM	OFDM	8VSB	
Ghost	0	0	Δ	Japan and Europe employ OFDM, which is robust against ghost. 8VSB of US can suppress ghost with ghost canceller.
Effective use of bandwidth	0	0	×	OFDM can make network with one frequency (SFN).
Mobile receiver	0	Δ	×	DVB-T can mobile reception in a good condition area.
Flexibility	0	Δ	×	The segmentation technology allows ISDB-T to provide HDTV and audio/SDTV programs simultaneously

Data Services

- (1) Program linked data services Actor's information, out line of the story, etc.
- (2) Program non-linked services News, weatherforecast, stock market information, etc.
- (3) Closed caption for hearing impaired persons
- (4) Interactive services via telephone line, via internet
- (5) EPG(Electronic Program Guide) TV program guide, booking to record programs, etc.

Stop of Analog Broadcasting

TV Shipments (domestic market)

In-car TV Receivers Navigation System Portable Navigation Device Full-Seg/One-Seg **One-Seg Only** Tuner separated model Mini GORILLA Strada CN-HDS965TD AVIC-VH099G NV-SD10DT Panasonic SANYO **Pioneer** All-in-one model **One-Seg Only In-Car TV** *Full-Seg is Optional **One-Seg Only** HS706D-A GORILLA NV-HD830DT CAV-TD85D1 NISSAN/SANYO SANYO SANYO

Portable DVD Player with ISDB-T tuner (One-Seg)

Other Portable One-Seg Receivers

Portable Audio Player

Portable Navigator

Portable Electronic Dictionary

Portable TV

Penetration of ISDB-T Receivers

Tuner, CRT, LCD, PDP, STB, DVD Recorder, PC	
24.1 Million	
Mobile Phone with One Seg	
9.9 Million	
□ Car TV	
0.65 Million	
PC with One Seg	
0.12 Million	
Total 34.77 Million	
JEITA 2007.6	
	81

Error Concealment Technology

- Enable the stable reception of Digital terrestrial HDTV broadcasting in a moving car
- When demodulated data include errors, it conceals errors of video/audio and reduce eyesore.

with Error Concealment

Nov.2005 released

without Error Concealment

Diversity Reception System for Relay Broadcasting

Example of Two Branch Operation

Input signal spectrum #2

Signal improvement by diversity reception relay system (Multi-path condition: D/U = 6dB, delay time = 1μ sec)

Long-delay Multipath Equalizer

Extended Equalization Range

Coupling Loop Interference Canceller

•The development is advanced by a national project of TAO.

(TAO: Telecommunications Advancement Organization of Japan) 93

4.9 International Activities

International Activities

- (1) In 1990s, ISDB-T had been reported in ITU-R, TG11/3, and recommended as a international broadcasting system in ITU-R Assembly meeting held in Istanbul in 2000.
- (2) Asian-Pacific Broadcasting Union (ABU) had held Workshop on DTTV since 1998, and DiBEG had been participating in it.
- (3) Since 1990s, the ISDB-T group participated in many international meetings on DTTV to explain the superiority of ISDB-T to the world, ITU-R, ABU, IBC, NAB, BroadcastingAsia, SMPTE, SET(Brazil), ISBT(China), etc..
- (4) In 1998, DiBEG participated in Singapore and Hong Kong carried out the comparison tests of three systems.
- (5) In 2000, Brazil carried out the same comparison tests, and they unveiled tests results for the first time in the world. The results showed ISDB-T was the best.
- (6) DiBEG has been proceeding with the penetration activities of ISDB-T in the world, focusing on South America and Asia.

Systems Prameters for Tests(in Brazil)

	ATSC	DVB-2K	DVB-8K	ISDB-T
Modulation	8VSB	COFDM	COFDM	COFDM
Payload	19,39 Mbits/s	19,75 Mbits/s	18,09 Mbits/s	19,33 Mbits/s
Receivers	Zenith	NDS	NDS	NEC
New	Chip T Chip U	Chin N	Chip L	Chip
receivers	Chip S	Спри	Chin M	Chip J
	Chip A			

Impulse Noise

Relation between the noise pulse width & interference to signal ratio

 Better performance of the ISDB-T system, by introducing time interleaving

Outdoor: Coverage

Tests Results of Mobile Reception in Brazil

Standard	Parameter				Transmission	Errors
	Modulation	Convolution	Guard Length	Carrier	(Mbps)	(Times)
	16QAM	2/3	1/16	2k	11.45	0
ISDB-T	64QAM	2/3	1/16	2k	17.18	6
	16QAM	2/3	1/16	4k	11.45	0
	QPSK	1/2	1/16	2k	4.39	1
DVB-T	QPSK	2/3	1/16	2k	5.85	Many
	QPSK	1/2	1/32	8k	4.52	Many
ATSC	8VSB				19.39	Out of measurement

Experiment of field mobile in Brazil

101

For ATSC's Insistence

ATSC : The ATSC's service area is larger than DVB-T and ISDB-T.

- "This is the natural result. In addition to pure information, both DVB-T and ISDB-T are transmitting guard interval signals against multi-path interferences. The guard interval signals are redundant, but to transmit such a countermeasure signals is indispensable against multi-path interferences, which always take palace and are inevitable in the terrestrial transmission paths."
- "ATSC doesn't have such a function as the guard interval, and transmission power is used only for the information transmission. Therefore, the ATSC's service area is large, but the actual receiving performance are very poor, as people always experience. ATSC don't use the transmission power for the countermeasure signals against indispensable multi-path interferences in the terrestrial transmission."
- "ATSC is just like without error correcting codes in digital systems. ATSC is the naked system against multi-path interferences"
- "The ATSC side always says "that the next generation multi-path equalizer has been under development". At present, I heard the next generation was the fifth. They maybe have to continue to develop the next generation equalizer for ever."

For DVB-T's Insistence

DVB-T :

- The one seg function can't be adopted for the GSM cellular phones.
 Concerning mobile reception, DVB-H can cover these services.
- (3) ISDB-T's receivers are very expensive.
- "All above comments are incorrect."
- "In Japan, GSM is not used, therefore currently there are not the GSM cellular phones with one seg in the market. Therefore, it is not a technical matter and not a crucial matter, but a false charge against us. Docomo and other manufactures are supposed to put their cellular phones with roaming function and one seg this year. "
- "DVB-H is a different system from the original DVB-T. Since DVB-T doesn't have a hierarchical transmission function, DVB-T can't broadcast HDTV with high bit rate and mobile services simultaneously."
- "As I mentioned in my presentation, many kinds of ISDB-T receivers from many manufactures are on the market. The price is going down year by year. As there are not DVB-T receivers for 6MHz and for HDTV reception in the market, we can't make comments on the price of DVB-T receivers.

5. Conclusion

Conclusion

- (1) Digital broadcasting has been penetrating in the world and leading digital consumer electronics.
- (2) The number of digital broadcasting receivers has been increasing rapidly in the world.
- (3) The Japanese terrestrial digital broadcasting (ISDB-T) had been developed based on the experiences of the development of TELETEXT and FM multiplex broadcasting systems.
- (4) In Japan, ISDB-T receivers have been penetrating fastest in the world.
- (5) ISDB-T has a lot of merits, system flexibility, mobile and portable reception, SFN, robustness against any interferences etc.
- (6) Brazil decided to adopt ISDB-T as their national system last year, on the results of comparison of three systems.
- (7) Only ISDB-T can satisfy the need of all people, and contribute to the improvement of the life of all people.

ISDB-T is the best.

Once Again

- Since radio frequencies are the common resources for people, we have to use them usefully.
- The most effective usage for VHF and UHF is for mobile and portable applications.
- Once we decide the DTTB system as a national broadcasting standard, we can't change the system anymore.
- We should select the best system for descendants not to regret it later.
- If you make a correct selection, we, Japanese side will do our best for Argentina.

Let's work together !