

Presentation 5 Emergency Warning System for Broadcasting

28th. February – 1st. March, 2007 Jakarta , Indonesia

DiBEG JAPAN Kenichi TSUCHIDA (NHK)

Emergency Warning System for Broadcasting

- Remote activation of Radio & TV ready for EWS
 - AM, FM Radio & TV : Control and Alert Sound
 - Digital Broadcasting (ISDB-T) : Emergency Warning Control Flag
- EWS has been operated since September 1985 in Japan
- Test signals are monthly broadcast in Japan

Emergency Warning System for Broadcasting

Contents

- I. Functions of broadcasting in disaster management
- 2. EWS for broadcasting History
- 3. EWS for analogue broadcasting
- 4. EWS for digital broadcasting
- **5.** Conclusion

1-1. Functions of Broadcasting in Disaster Management

- Gathering/receiving disaster information from administrative organizations
- Filtering information
- Delivering disaster information to the general public
- Broadcasting offers reliable information
 There are no "spam" information in broadcasting
- Always connected to everybody
 There are no congestions like in communication
- Always active : 24 hour operation

Broadcasting is a ideal media to deliver disaster information

1-2. Functions of Broadcasting in Disaster Management

2. Emergency Warning System for Broadcasting in Japan - History

- 1980
- Sep. 1,1985[†]
- Mar.18,1987
- Jan.13,2007
- Up to now

- Start of EWS study
- 5[†] Start of EWS in Japan
 - First EWS operation for tsunami warning
 - Latest EWS operation for tsunami warning
 - 15 times EWS operation during 20 years

† On Sep. 1, 1923, a big earthquake attacked Tokyo area and more than 100 thousand people died. It became a trigger to start radio broadcasting in Japan. Sep. 1st is the day of disaster prevention in Japan.

ISDB-T Seminar 3-1. EWS for analogue broadcasting Transmission and Reception

Digital Broadcasting Experts Group

^{ninar} 3-2. EWS for analogue broadcasting Conventional Receivers

Receiver with a Clock

Receiver with Power on switch

ISDB-T Seminar 3-3. EWS for analogue broadcasting Low cost EWS implements

Digital Broadcasting Experts Group

K

STRL

4-1. EWS for Digital Broadcasting ISDB-T One-Seg Services

ISDB-T Seminar 4-2. EWS for Digital Broadcasting ISDB-T One-Seg Terminals in the Market

STRL

SoftBank 905SH

Laptop Computer

ワンセグアンテナ ワンセグチューナーを搭載した場合は 本体側面にアンテナがつきます

Portable DVD player

4-3. EWS for Digital Broadcasting ISDB-T One-Seg Services

- EWS for ISDB systems have already been in operation in Japan as well as analog broadcast
- Portable EWS receivers for ISDB-T are now under development
- Portable receivers are expected to enlarge the opportunity to relieve disaster
- Technology for saving power consumption is the key
- EWS should be prepared by other digital broadcasting systems

ISDB-T Seminar 4-4. EWS for Digital Broadcasting Concurrent mobile receiver activation using EWS

4-5. EWS for Digital Broadcasting EWS signal allocation in ISDB-T

⁴ 4-6. EWS for Digital Broadcasting ISDB-T One-Seg Services & EWS

- Remote activation of mobile terminals by EWS is very effective.
- EWS bits in TMCC have to be always watched in mobile terminals.
 - The problem is power consumption of mobile terminals

Power consumption saving is required during EWS stand-by mode

4-7. EWS for Digital Broadcasting Conventional EWS stand-by

Silicon Tuner(100mW) and Demodutator(50mW) are always active

Life of a Battery(3.7V,800mAh≒3Wh) is only 20h(1 day)

More than 200h(8 days) would be required

ISDB-T Seminar 4-8. EWS for Digital Broadcasting Saving Power Consumption for EWS stand-by

- Silicon Tuner(10mW) and EWS bit detector(5mW) are active only for necessary duration
- Life of a Battery(3.7V,800mAh $\doteq 3$ Wh) improved to 200h(8.3 days)

STRL

ISDB-T Seminar 4-9. EWS for Digital Broadcasting

One-Seg Prototype Receiver ready for EWS with very low power consumption

5-1. Conclusion

- Broadcasting is a ideal media to deliver disaster information.
- EWS is a broadcasting system which remotely activates Radio & TV ready for the system.
- EWS for analog AM/FM radio and TV has already been in operation in Japan
- Preparation for EWS toward digital broadcasting
 - Remote activation of mobile terminals by EWS is very effective.
 - Power consumption saving is required during EWS stand-by mode.

5-2. Usage for EWS

Not only

- Tsunami forecast
- But also
- Earthquake forecast
- Hurricane forecast
- Flood warning
- Eruption warning
- Fire warning
- Other warning

