

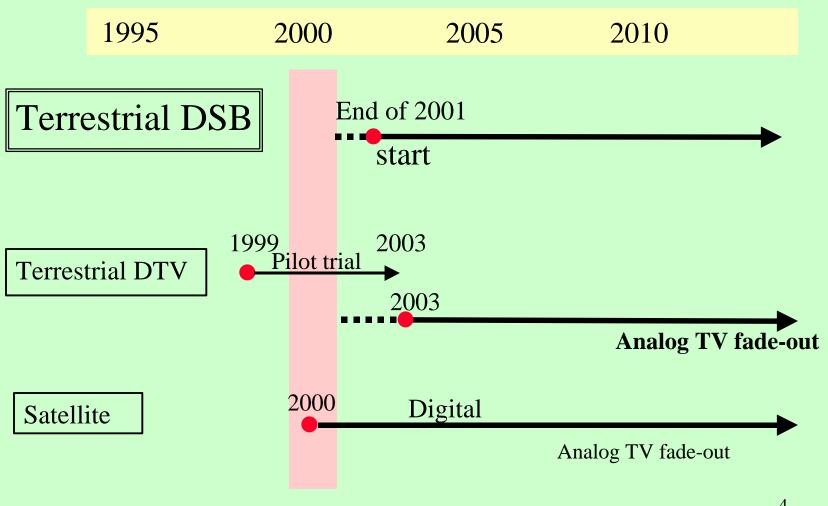
1

ISDB-T_N for **DSB**

YASUO TAKAHASHI

Digital Broadcasting Experts Group(DiBEG)

Japan


- 1. Introduction
- 2. ISDB-T_N system
 - features, channel coding, transmission examples, transmission parameters, frequency utilization
- 3. Comparison of DSB systems
- 4. Service content examples for ISDB- T_N
- 5. Field Experiments
- 6. Summary

Digital Sound Broadcasting Systems

	U S A	Europe	Japan
TV	DTV	DVB-T	ISDB-T
Sound	IBOC	DAB	ISDB-T

Schedule of Digital Broadcasting Experts Group in Japan

DiBEG

Outline of ISDB-Tn(1)

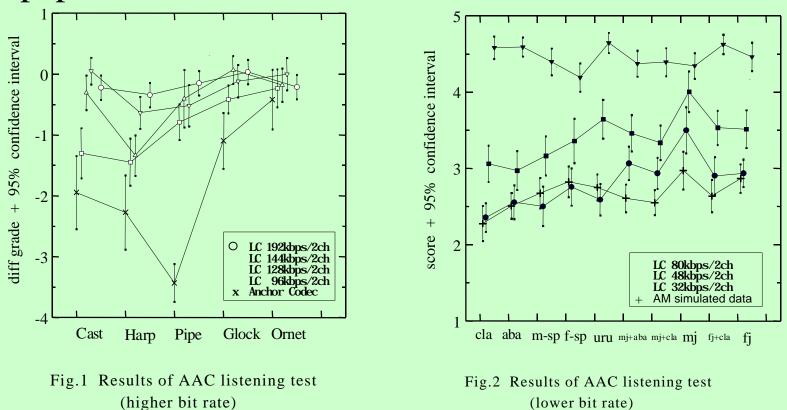
- Source coding
 - MPEG-2 AAC audio (ISO/IEC 13818-7)
 - bit rate : 144kbps / two-channel stereo
 - sampling frequency : 32, 44.1, 48kHz and half rates (16, 22.05, 24 kHz) for mobile
 - XML data coding

Outline of ISDB-Tn(2)

- Multiplexing
 - MPEG-2 system(ISO/IEC 13818-1)
- Transmission scheme
 - BST-OFDM
 - Concatenated error correction code (Reed Solomon + Convolutional

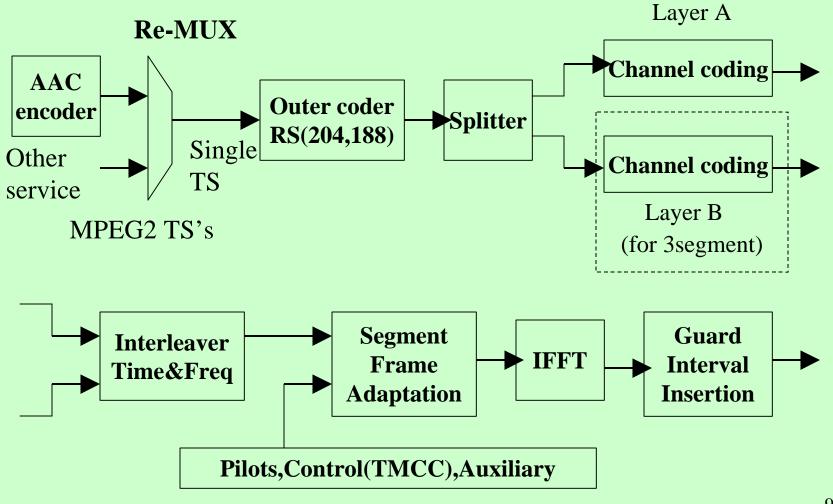
code,1/2,2/3,3/4,5/6,7/8)

Flexible channel coding (modulation, error correction, time-interleave)

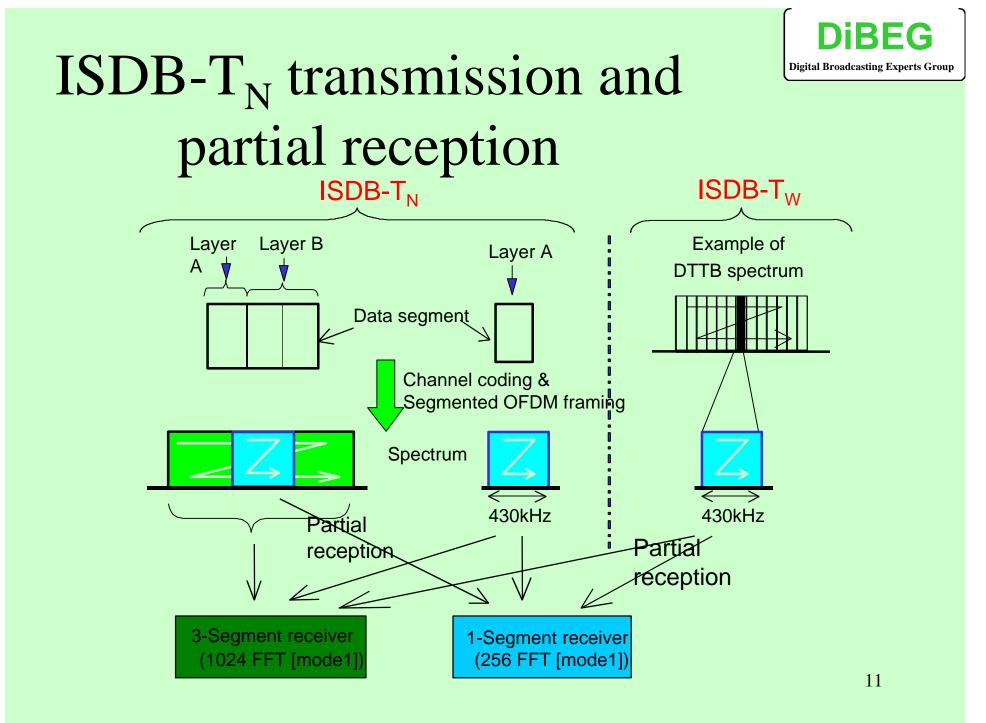

AAC (Advanced Audio Coding)

- MPEG-2 standard (focusing on audio quality)
- Coding rate of stereo sound
 MPEG AAC:128 144 kbps (MPEG BC:256 kbps)
- Japan's broadcasting standard
 - BS Digital (starts in the end of 2000),
 Satellite Audio Digital(),
 - Terrestrial Digital TV (2003),
 - Terrestrial Digital Sound (the end of 2001)

Test results

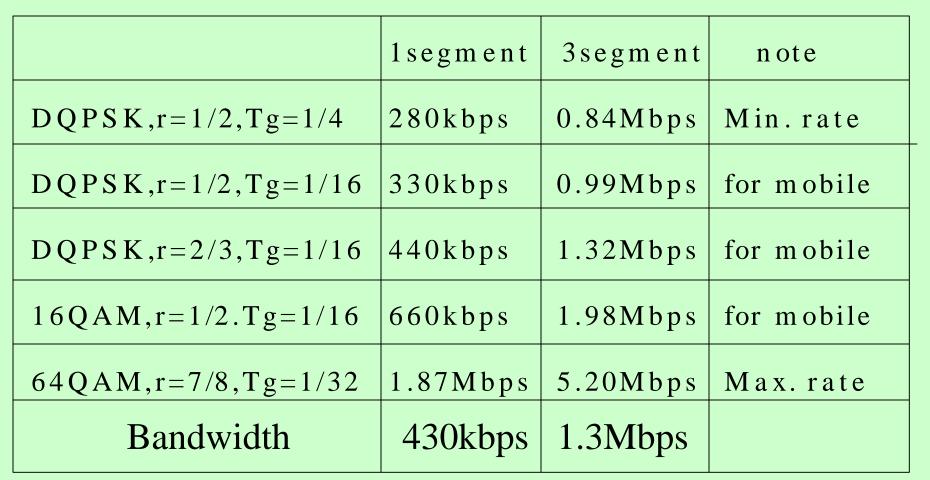

This section is reserved for figures derived from ARIB paper.

(lower bit rate)


Transmission scheme

BST-OFDM

- BST-OFDM transmission
 - composed of a set of frequency blocks (OFDMsegment)
 - common to DTTB transmission
- OFDM-segment
 - bandwidth ; 1/14 of TV channel (430kHz ; 6 MHz)
 - common structure in carrier usage
 - unit of channel-coding


Transmission parameters

Mode	1	2	3	
Segment(s)	1 or 3			
Bandwidth	430kHz or 1.3MHz			
Carrier spacing	3.97kHz 1.98kHz 0.99kHz			
Total carriers	109 / 325	217 / 649	433 / 1297	
Data carriers	96 / 288 192 / 576 384 / 1152			
TMCC,AC,CP, SP carriers	13 / 37	25 / 73	49 / 145	
Modulation	QPSK, 16QAM, 64QAM, DQPSK			

Transmission parameters (con't)

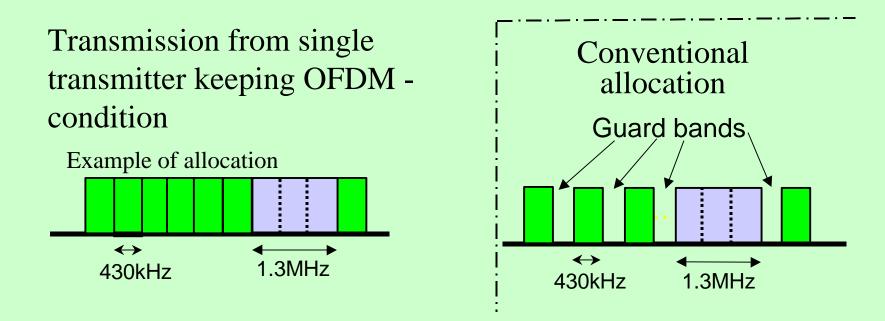
1	2	3	
252µs	504µs	1.008ms	
1/4 - 1/32 of symbol duration			
204			
53 - 64ms	106 - 129ms	212 - 257ms	
Convolutional code			
Inner code (1/2, 2/3, 3/4, 5/6, 7/8)			
(204,188) RS code			
Time and Frequency			
	1/4 - 1 53 - 64ms Co (1/2 (2	252μs 504μs 1/4 - 1/32 of symbol of 204 53 - 64ms 106 - 129ms Convolutional coo (1/2, 2/3, 3/4, 5/6, 100) (204,188) RS coo	

Example of information bit-rate(TS rate)

The information bit rates do not depend on transmission mode1,2 or 3, They depend on modulation ,coding rate and guard interval

DiBEG

Spectrum utilization (1)


Broadcasting frequency bands are looked upon as a sequence of segments, which have a bandwidth of one fourteenth of a TV channel.

BST-OFDM scheme provides followings.

- -DTV uses 13 segments, remaining one ; guard band,
- -DSB uses 1 or 3 segments
- -1-segment reception of 13 segment-TV signal by DSB receiver
- -Consecutive-segment transmission without guard bands
- -systematic frequency re-packing towards total digital age

Spectrum utilization (2) Consecutive-segment Transmission of DSB channels

Frequency utilization efficiency will be improved up to 150%.

Summary of Features

- MPEG-2 coding and MPEG-2 systems
- High-quality and efficient sound broadcasting
- High-reliability with powerful error correction
- Mobile and portable reception
- Flexible transmission scheme common with DTTB
- Highly effective frequency utilization

Comparison of DSB Systems (1)

Requirement		ISDB - Tn	DAB	
Transmission Bandwidth		429KHz at 1 segment 1,289KHz at 3 segments	1,536MHz at mode I - IV 768KHz at mode V	
Source Co	oding	6MHz Band : 21 Stereo + 379Kbps(max) 4MHz Band : 12 Stereo + 320Kbps(max) One system : 1 Stereo + 87Kbps(1 Segment) 5 Stereo + 73Kbps(3 segments) GI=1/4 r=1/2	6MHz Band : 12 Stereo + 384Kbps(max) 4MHz Band : 8 Stereo + 256Kbps(max) One system : 4 Stereo + 128Kbps(mode I – IV) r=1/2	
Multiplex	ing	MPEG 2 Audio AAC and MPEG 2 Systems	MPEG 1(Layer II) and Own Systems	
Carrier N	Iodulation	OFDM(DQPSK, QPSK, 16QAM, 64QAM)	OFDM (DQPSK)	
Error	Inner Code	Convolution code ¹ / ₂ ,2/3 ,3/4 , 5/6 , 7/8	Convolution code 1/2 ,2/3 ,3/4 , 5/6 , 7/8	
Correction	Outer Code	RS (204 ,188)		
Note		BER improved from 2 x 10⁻⁴ to 10 ⁻¹¹ by outer code(RS)	Weakness BER 2 x10 ⁻⁶	
		Satisfied ITU R Broadcast Quality with 144Kbps By MPEG 2 Audio AAC (Higher efficiency than	Satisfied ITU R Broadcast Quality with 256Kbps by MPEG 1(Layer II)	
		PAB Interoperability : MPEG 2 Audio AAC MPEG 2 Systems	18	

Comparison of DSB systems (2)

Item	ISDB-T	DAB
MPEG2 multiplexing	yes	no
MPEG2 Transport Stream	yes	no
Transmission flexibility	good	no
Audio coding rate	good	poor
5.1 Multi-channel Audio	yes	no
Error correction	good	poor
Compatibility with digital TV systems	yes	no
Power consumption (Potable receiver)	good	poor
Frequency planning	easy	difficult

Service content examples (1/3)

- High quality Sound broadcasting service
 - Adopt the most efficient audio coding:AAC (See the attachment for details)

• Support the several bit rates of audio coding

- 144kbps or 128kbps for high quality stereo
- support the lower bit rates for FM broadcasting class (music,information ,sports) : 96kbps
- support the lower bit rates for speech class (news, talk): 32kbps-64kbps

Service content examples (2/3)

- Several data services investigated in ARIB
- (1) Sound program associated with data
 - Words of music(scrolling): text data
 - Title and jacket of music: still picture and/or text
- (2) Independent data broadcasting
 - Weather news: Audio+text+ (still picture)
 - Stock market information:same as above
 - Traffic information: same as above
 - Shopping guide: still picture+text+(audio)

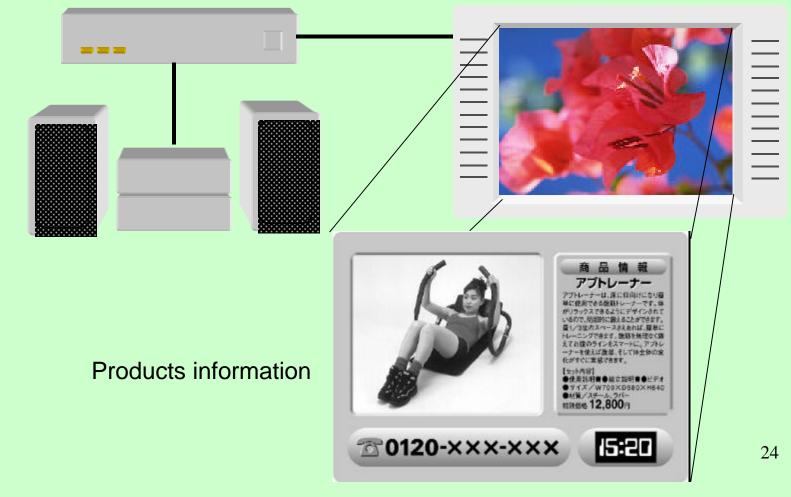
Sound program associated with data

Data broadcasting (1)

(a) Potable receiver

Metropolitan Expressway Ishikawa JCT-Chidori : 45min.

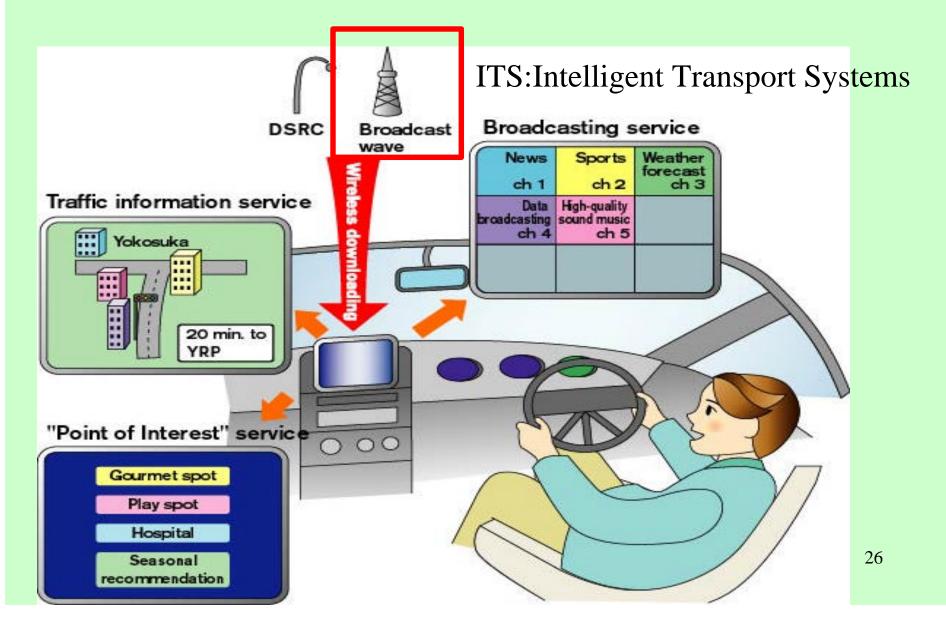
(c) Personal phone type receiver


(b) Car receiver

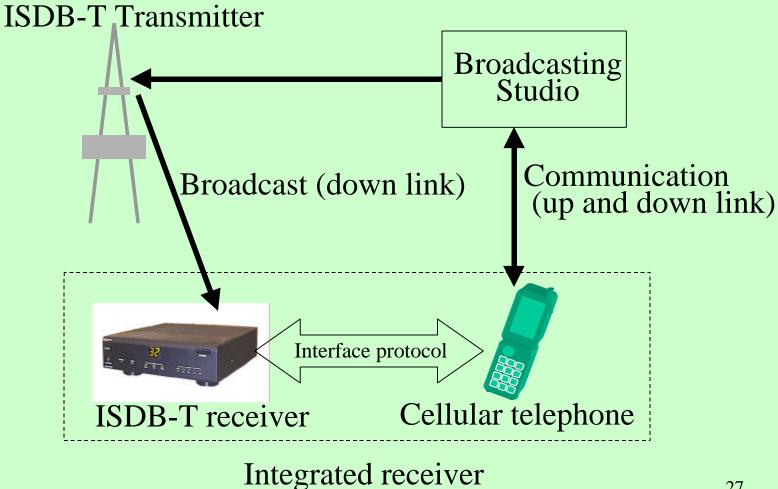
Data broadcasting (2)

Fixed-type receiver

TV display (still picture)


Service content examples (3/3)

(continued)


- (3)Low quality video(MPEG-4) is on investigation
 - small size display receiver
- Considering the bit rates sharing
 - Keep the lower bit rate than transmission bit rate
 - Share the bit rates to several services,
 - such as,MPEG2 control(PSI,PCR,etc),program
 guide(SI/EPG), sound, text,still picture and others

$ISDB-T_{N} \text{ service development with ITS}^{\text{Digital Broadcasting Experts Group}}$

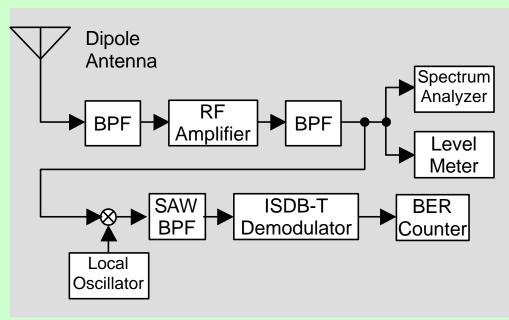
DiBEG

Dibeg ISDB-T service development With cellular telephone

System Confirmation Tests

- Carried out by ARIB from June to September in1999
- Field experiments
 - -Wide-area mobile reception trials
 - -Urban-area mobile reception trials

Experimental Transmitting Station



- Mounted on Tokyo Tower
- Specifications

Antenna height	247.5 m
Frequency	190.0 MHz (VHF 7ch)
Transmitter power	100 W
ERP	800 W
Polarization	Linear-Vertical

Tokyo Tower

Measuring Equipment

- Measurements
 - Field strength
 - **BER** (bit error rate)
 - Positions of measuring points (by GPS)
- Measurements taken once every second

DiBEG

Digital Broadcasting Experts Group

DiBEG Digital Broadcasting Experts Group

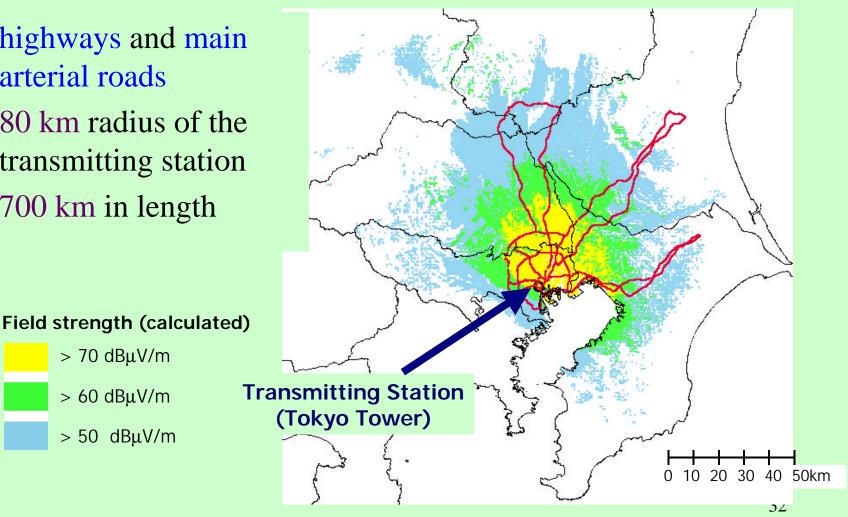
Wide-area mobile reception trials

- Purpose of the trials
 - To investigate the mobile reception characteristics
 - fast-moving
 - over highways and main arterial roads
 - under actual environmental conditions

• Transmission parameters

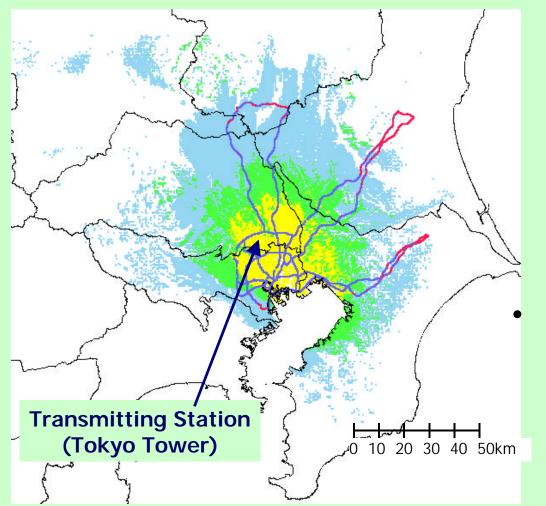
Mode	Guard Interval Ratio	Time- interleave	Carrier Modulation	Error Correction	Information Bit Rate
3	1/16	407ms	DQPSK	1/2 + RS	330.42
3	1/16	407ms	16QAM	1/2 + RS	660.84

Wide-area mobile reception trial Measurement course


- highways and main arterial roads
- 80 km radius of the transmitting station

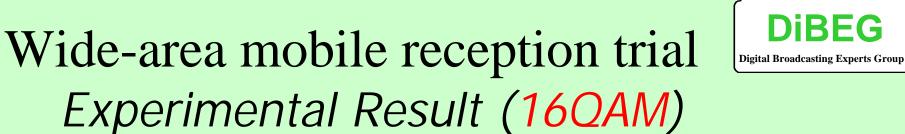
 $> 70 \text{ dB}\mu\text{V/m}$

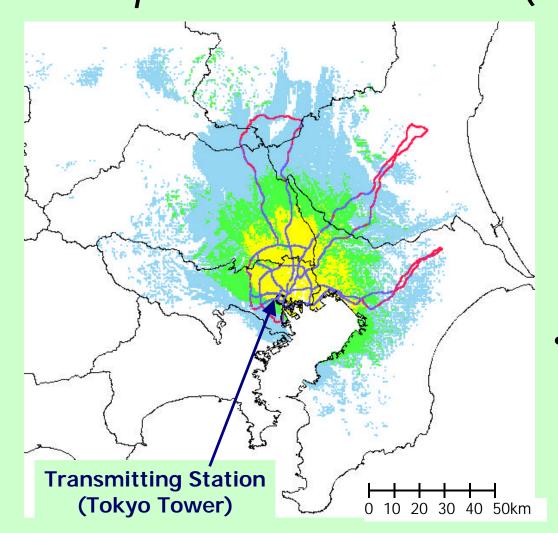
 $> 60 \text{ dB}\mu\text{V/m}$


 $> 50 \text{ dB}\mu\text{V/m}$

• 700 km in length

Wide-area mobile reception trial Experimental Result (DQPSK)

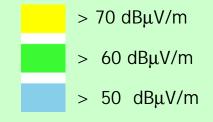

DQPSK 1/2+RS


Error free Error occurred

Field strength (calculated)

- $> 70 \text{ dB}\mu\text{V/m}$
- > 60 dBµV/m
- > 50 dBµV/m

Correct receiving: about 60 km radius



16QAM 1/2+RS Error free

Error occurred

Field strength (calculated)

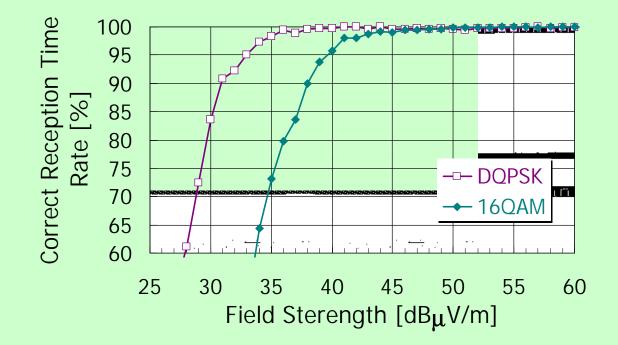
 Correct receiving: about 40 km radius

Correct reception time rate

- definition
 - Proportion of samples measured in a 1-second interval
 - Correct received time:

the measured sample of which the BER = 0

after Reed-Solomon decoding


Correct reception time rate

(Number of correct received time)

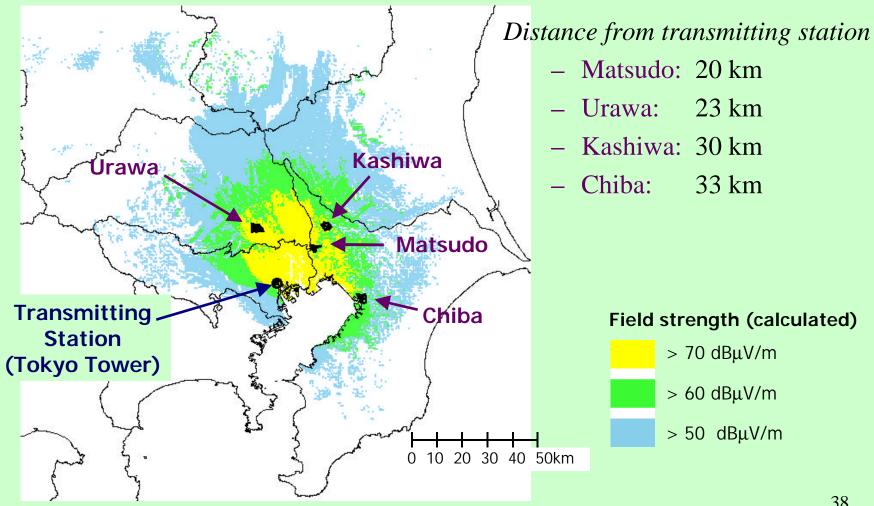
(Number of samples)

Wide-area mobile reception trial *Field strength and correct reception rate*

• Field strengths to obtain correct reception time rates

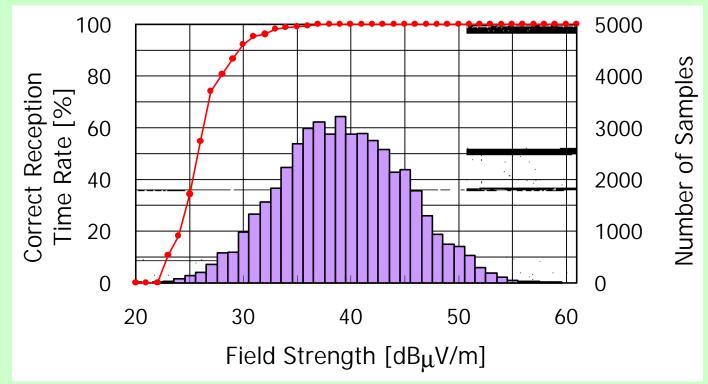
Correct Reception Time Rate	9 5%	98%	99 %
DQPSK	33 dBμV/m	35 dBμV/m	38 dBµV/m
16QAM	40 dBμV/m	41 dBμV/m	44 dBμV/m

36



Urban-area mobile reception trials

- Purpose of the trials
 - To confirm mobile reception characteristics
 - in medium-sized cities
 - located 20-30 km from the transmitting station
 - under typical traffic conditions
- Transmission parameters


Mode	Guard Interval Ratio	Time- interleave	Carrier Modulation		Information Bit Rate
3	1/16	407ms	DQPSK	1/2 + RS	330.42

Urban-area mobile reception true Bibles Casting Experts Group Cities where the trials were conducted

Urban-area mobile reception trialDiBEG

Field strength distribution and correct reception time rate

• Field strengths to obtain correct reception time rates

Correct Reception Time Rate	9 5%	98%	99 %
Field Strength	31 dBµV/m	33 dBµV/m	35 dBµV/m

DiBEG Digital Broadcasting Experts Group

Review of the features of $ISDB-T_N$

- Segment transmission format
 - Support the narrow band digital terrestrial broadcasting: 1 segment and 3 segment type
- Adopt the efficient audio coding(MPEG AAC)
 High quality sound and low quality sound
- Adopt the MPEG2 systems for multiplexing – Flexibility and expandability for service multiplexing
- Robustness against multipath fading
 Adopt the DQPSK and time interleave

Conclusion

The ISDB-T_N provides following system merits;

- Interoperability of MPEG-2 systems
- High coding rate audio of AAC
- Powerful error correction of concatenated codes
- Transmission flexibility by BST-OFDM with a lot of transmission parameters
- Effective frequency utilization by BST-OFDM.

In the end of 2001, DSB starts in Japan