ISDB-T Transmission Technologies and Emergency Warning System

12 de Febrero 2008
Universidad Ricardo Palma, Lima, Perú
DiBEG, JAPAN
Hiroyuki FURUTA
(NHK)
1. Outline of ISDB-T
2. ISDB-T transmission system
 • Requirements and features, transmission technologies, parameters, ISDB-T standard
3. Comparison of 3 DTTB systems
 • Features of 3 DTTB systems and comparison test results
4. Emergency Warning Broadcasting System (EWS) for ISDB-T
 • EWS and its key technology of power saving
5. Conclusions
What is ISDB-T?

ISDB-T is ...

• **One of the DTTB systems in the world**
 - There are 3 systems recommended in ITU-R BT1306.
 - ISDB-T, DVB-T and ATSC

• **The most flexible system**
 - HDTV, multi-SDTV, EPG, data-casting, internet-access, mobile reception, Cellular phone TV, etc.

• **The most robust system**
 - OFDM, time-interleaving, etc.
 - Brazilian comparison test results proved it.
2. ISDB-T transmission system

- Requirements of DTTB
- Transmission key technologies
- Technical features of ISDB-T
- ISDB-T standard

DTTB *(Digital Terrestrial Television Broadcasting)*

ISDB-T *(Integrated Services Digital Broadcasting - Terrestrial)*
Requirements for DTTB

- **Attractive broadcasting service**
 - High quality pictures & sound (HDTV, 5.1 surround)
 - Anytime information access (Data, Internet)
 - Robustness against interference

- **Mobile and portable reception**
 - Anytime, anywhere TV service

- **Effective Frequency Utilization**
 - Frequency congestion in VHF/UHF TV bands
 - OFDM, SFN (Single Frequency Network)
Receiving environment for terrestrial TV broadcasting

Fixed reception

• Multipath interference
• Fading interference
• Impulse, manmade noise
• Shadowing

Mobile reception

Handheld reception

Receiving environment is very severe.
Key technologies for ISDB-T

Key technologies adopted in ISDB-T

• To overcome severe receiving environment of DTTB service
 – OFDM
 – Time-interleaving (Freq. & Time interleave)

• To achieve effective and smart transmission
 – Hierarchical transmission by segmented OFDM
 • HDTV / multi-channel SDTV service for fixed and mobile
 • One-Seg service for handheld
OFDM is

- Multi-carrier modulation
 - More than 2,000 carriers in a 6MHz TV channel
 - Long symbol duration compared to single-carrier transmission system

- Multipath proof modulation
 - By adding guard interval

- Modulation/demodulation can be processed by IFFT/FFT.
Features of OFDM signal

• Robustness against **multipath interference** and **frequency-selective fading**
 – The band is divided by its component carriers.
 ✓ Carrier-by-carrier degradations
 ✓ Longer symbol duration and **guard interval** mitigates the influence.

• **SFN** (Single Frequency Network)
 – Thanks to guard interval, SFN can be applied.
 – Same as multipath

Spectrum is rugged. (Frequency-selective)
Digital transmission

- Forward Error Correction (FEC) is applied.
 - Lower required C/N

- Convolutional coding, Reed-Solomon coding
- Error distribution affects the correction performances
 - Random error? or burst error?

Interleaving

- Randomization of error distribution
- Carrier arrangement, time-sequence of symbols

An order is randomly changed.
Suitable for multipath interference. But, ineffective to flat-fading and impulse noise.

Suitable for fading and impulse interference. But, ineffective to multipath interference.

Suitable for all kinds of interference.

Following interleaving adopts only multi-carrier transmission system.

Frequency and time interleaving (1)

- **Frequency domain (Carriers)**
- **Time domain (Symbols)**

OFDM signal

ISDB-T

Frequency interleaving
- Carrier randomization
- Suitable for multipath interference. But, ineffective to flat-fading and impulse noise.

Time interleaving
- Symbol randomization
- Suitable for fading and impulse interference. But, ineffective to multipath interference.

Frequency & Time interleaving
- Carrier & Symbol randomization
- Suitable for all kinds of interference.
Frequency and time interleaving (2)

Transmission
- Multipath interference (Frequency selective interference)
- Flat fading or impulse noise

Frequency interleaving

Frequency & Time interleaving

Time interleaving

De-interleave

- 2-dimensional Random error
 - Suitable for Viterbi and Reed-Solomon error corrections

Digital broadcasting experts group
Effect of frequency and time interleaving

Laboratory test results

Flat fading, DQPSK, Mode=1, GI=1/8, FEC=1/2, RS=OFF

- **Without time interleaver:**
 - Error remains even in high C/N.

- **With time interleaver:**
 - No error at more than C/N=20dB.

Graph:
- **BER** vs. **C/N [dB]**
- Frequency: Fd = 7 Hz, Fd = 20 Hz, Fd = 70 Hz
- With and without time interleaver
 - Without time interleaver: Error remains even in high C/N
 - With time interleaver: No error at more than C/N=20dB
Hierarchical transmission

ISDB-T adopts hierarchical transmission system
- by **FDM** (frequency division multiplexing) of Segment

Hierarchical transmission is realized by changing following parameters
- **Modulation**: QPSK, 16QAM, 64QAM, (DQPSK)

<table>
<thead>
<tr>
<th></th>
<th>QPSK</th>
<th>16QAM</th>
<th>64QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>More robust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Error correction**: Coding rate of convolutional code (1/2 - 7/8)

<table>
<thead>
<tr>
<th></th>
<th>1/2</th>
<th>2/3</th>
<th>3/4</th>
<th>5/6</th>
<th>7/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>More robust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of hierarchical transmission

Example

(2 layers transmission)

- **Layer A**
 - Handheld reception (One-Seg service)
 - QPSK
 - FEC=2/3

- **Layer B**
 - Fixed reception, Mobile reception (HDTV, etc)
 - 64QAM
 - FEC=3/4

Handheld reception (One-Seg service)
- Robust transmission mode

For HDTV service
- High capacity transmission mode

- **6MHz frequency**
 - (13 segments)

- **Layer A**
 - LDTV, Audio, Data

- **Layer B**
 - HDTV or 3 SDTVs with Data
Features of ISDB-T transmission system

1. Robustness against interference
 (1) OFDM transmission system
 (2) Time interleaving; very effective for various kinds of interference
 (3) Concatenated error correction with plural interleaver

2. Fixed and mobile (handheld) service can be achieved in one transmission channel
 (1) Hierarchical transmission by segmented OFDM
 (2) Partial reception of center one-segment for handheld service, “One-Seg.”

3. Efficient frequency utilization
 (1) OFDM transmission system; SFN operation
 (2) Hierarchical transmission; service for different type of reception in one frequency channel

4. Flexibility for several type of service/reception style
Transmission parameters of ISDB-T (6MHz Bandwidth)

<table>
<thead>
<tr>
<th>ISDB-T mode</th>
<th>Mode 1 (2k)</th>
<th>Mode 2 (4k)</th>
<th>Mode 3 (8k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of OFDM segment</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful bandwidth</td>
<td>5.575MHz</td>
<td>5.573MHz</td>
<td>5.572MHz</td>
</tr>
<tr>
<td>Carrier spacing</td>
<td>3.968kHz</td>
<td>1.984kHz</td>
<td>0.992kHz</td>
</tr>
<tr>
<td>Total carriers</td>
<td>1405</td>
<td>2809</td>
<td>5617</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK, 16QAM, 64QAM, DQPSK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of symbols / frame</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active symbol duration</td>
<td>252 μs</td>
<td>504 μs</td>
<td>1.008ms</td>
</tr>
<tr>
<td>Guard interval duration</td>
<td>1/4, 1/8, 1/16, 1/32 of active symbol duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner code</td>
<td>Convolutional code (1/2, 2/3, 3/4, 5/6, 7/8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer code</td>
<td>RS (204,188)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time interleave</td>
<td>0 -- 0.5s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful bit rate</td>
<td>3.651Mbps -- 23.234Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Items</td>
<td>Contents</td>
<td>ARIB Standards</td>
<td>ITU-R Recommendations</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Video coding</td>
<td>MPEG-2 Video (ISO/IEC 13818-2)</td>
<td>STD-B32</td>
<td>BT.1208</td>
</tr>
<tr>
<td>Audio coding</td>
<td>MPEG-2 AAC (ISO/IEC 13818-7)</td>
<td>STD-B32</td>
<td>BS.1115</td>
</tr>
<tr>
<td>Data broadcasting</td>
<td>BML (XHTML), ECMA Script</td>
<td>STD-B24</td>
<td>BT.1699</td>
</tr>
<tr>
<td>Multiplex</td>
<td>MPEG-2 Systems (ISO/IEC 13818-1)</td>
<td>STD-B10, STD-B32</td>
<td>BT.1300, BT.1209</td>
</tr>
<tr>
<td>Conditional access</td>
<td>Multi 2</td>
<td>STD-B25</td>
<td>—</td>
</tr>
<tr>
<td>Transmission</td>
<td>ISDB-T transmission</td>
<td>STD-B31</td>
<td>BT.1306 System C</td>
</tr>
<tr>
<td>Receiver</td>
<td>ISDB-T receiver</td>
<td>STD-B21</td>
<td>—</td>
</tr>
<tr>
<td>Operational guideline</td>
<td>ISDB-T broadcasting operation</td>
<td>TR-B14</td>
<td>—</td>
</tr>
</tbody>
</table>
3. Comparison of 3 DTTB systems

• Comparison of 3 DTTB systems
• Results of comparison test in Brazil
• Summary of comparison
Technical features of DTTB Systems

<table>
<thead>
<tr>
<th>System</th>
<th>ATSC</th>
<th>DVB-T</th>
<th>ISDB-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>8VSB</td>
<td>OFDM (QPSK, 16QAM,64QAM)</td>
<td>Segmented OFDM (DQPSK,QPSK, 16QAM,64QAM)</td>
</tr>
<tr>
<td>Inter-leaving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit/Symbol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Frequency</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>time</td>
<td>-</td>
<td>-</td>
<td>0s, 0.1s,0.2s,0.4s</td>
</tr>
<tr>
<td>Excess Bandwidth/ Guard Interval</td>
<td>11.5%</td>
<td>1/4, 1/8,1/16,1/32</td>
<td>1/4, 1/8,1/16,1/32</td>
</tr>
<tr>
<td>Configuration</td>
<td>-</td>
<td>TPS</td>
<td>TMCC</td>
</tr>
<tr>
<td>Information bit rate</td>
<td>19.39 Mbps</td>
<td>3.69 -23.5Mbps</td>
<td>3.65 -23.2 Mbps</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>6 / 7 / 8 MHz</td>
<td>6 / 7 / 8 MHz</td>
<td>6 / 7 / 8 MHz</td>
</tr>
</tbody>
</table>
Results of Brazilian Tests

• Comparison tests for three DTTB systems
 – ATSC, DVB-T, ISDB-T
• Carried out from Aug. 1999 to April 2000
• Laboratories tests
 – AWGN, impulse noise, multipath, Doppler effect
• Field tests
 – Coverage, gap-filler, indoor reception, etc.

ISDB-T shows superior performances especially for following items
(1) Robustness against impulse noise (urban noise)
(2) Coverage; robustness of ISDB-T system leads wide cover area
(3) Indoor reception; Robustness against impulse noise and fading leads good performance of indoor reception
Selected transmission parameters

- Transmission parameter: almost same bit rate
- **ATSC**
 - Fixed, 8VSB FEC=2/3 (19.39 Mbit/s)
- **DVB-T**
 - DVB-2K: 64QAM FEC=3/4 GI=1/16 2K (19.75 Mbit/s)
 - DVB-8K: 64QAM FEC=2/3 GI=1/32 8K (18.09 Mbit/s)
- **ISDB-T**
 - ISDB-4k: 64QAM FEC=3/4 GI=1/16 4K 0.1s (19.33 Mbit/s)

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Impulse Noise

- Better performance of the ISDB-T system, by introducing time interleaving

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Static Multipath

Carrier to noise ratio as a function of carrier to echo ratio
Comparison at post-echo = 8us

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Doppler Effect

Echo to carrier ratio as a function of frequency offset
Comparison at post-echo = 8 us:

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Outdoor: Coverage

Success on Receiving - Cumulative Function
Criterion: Number of Errors < 5

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Indoor Reception

Indoor Reception: Sites Where the Three Systems Were Tested in the Same Condition

Better

(From the presentation of the Brazilian SET/ABERT study group at NAB2000)
Essence of comparison test results

- **OFDM** modulation scheme is suitable for DTTB in real broadcast circumstances.
- **Time interleaving** scheme, adopted in ISDB-T, is a key technology for mobile digital transmission and is also effective to cope with impulse noise degradation.
- **ISDB-T** showed the best results in Brazil’s comparison tests.
4. Emergency Warning Broadcasting System

• Emergency Warning Broadcasting System (EWS)
• Service image of EWS
• EWS for One-Seg
• Key technology for power saving
Emergency Warning Broadcasting System

- Remote activation of Radio & TV ready for EWS
 - AM, FM Radio & TV: Control signal and Alert Sound
 - Digital Broadcasting (ISDB-T): Emergency Warning Control Flag
- In Japan, EWS for analog broadcasting has been operated since September 1985
- EWS test signals are monthly broadcasted in Japan
Functions of broadcasting in disaster management

1. Gathering/receiving disaster information from administrative organizations
2. Filtering information
3. Delivering disaster information to the general public
4. Broadcasting offers reliable information
 There is no “spam” information in broadcasting
5. Broadcasting is always connected to everybody
 There are no congestions like in communication
6. Broadcasting is always active: 24 hour operation

- Broadcasting is an ideal media to deliver disaster information to the general public
Concurrent mobile receiver activation using EWS

Digital broadcasting experts group

Carrier containing EWS

Mobile digital terrestrial service (bandwidth: 429 kHz)

Continuous monitoring of the carrier

Tsunami warning issued
EWS signal allocation in ISDB-T

Transmission and Multiplexing Configuration Control (TMCC) Signal

Time

Frequency

432 carriers for Segment

4 TMCC carriers in Segment

Emergency Warning Flag

One segment service (BW : 429 kHz)

432 carriers

HDTV service (BW : 5.6MHz)

Digital broadcasting experts group

Seg #0
(429kHz)

Seg #11
(429kHz)

Seg #9
(429kHz)

Seg #7
(429kHz)

Seg #5
(429kHz)

Seg #3
(429kHz)

Seg #1
(429kHz)

Seg #0
(429kHz)

Seg #2
(429kHz)

Seg #4
(429kHz)

Seg #6
(429kHz)

Seg #8
(429kHz)

Seg #10
(429kHz)

Seg #12
(429kHz)
• EWS for ISDB systems have already been in operation in Japan as well as analog broadcasting
• Portable EWS receivers for One-Seg are now under development
• One-Seg receivers are expected to enlarge the opportunity to avoid disaster
• Key technology is power consumption saving in stand-by mode
Remote activation of mobile terminals by EWS is very effective.

EWS bits in TMCC have to be always watched in mobile terminals.

The problem is power consumption of mobile terminals

Power consumption saving is required during EWS stand-by mode

We developed the key technology
Key technology for power saving while EWS stand-by mode

• NOT employ a FFT for EWS bit detect.
• Silicon Tuner(10mW) and EWS bit detector(5mW) are active only for necessary duration
• Life of a Battery(3.7V,800mAh≒3Wh) improved to 200h(8.3 days)

More than 10 times improved
5. Conclusions
Conclusions

• **ISDB-T** is the *most robust* transmission system
 – Adopting OFDM and time-interleaving
 – Brazilian comparison tests prove it.

• **HDTV** (or **SDTV multi-channel**) and **One-Seg**
 (handheld TV service) can be transmitted *simultaneously* in a single channel.

 ➢ *ISDB-T enables both digital TV service for fixed and mobile (handheld) by just one transmission facility*

• **SFN** can be effective for frequency utilization

• Power saving of **One-Seg EWS** receiver in stand-by mode, which is a key technology, has been almost completed.